Zero noise limit for singular ODE regularized by fractional noise

Paul Gassiat

CEREMADE, Université Paris-Dauphine

Mean field interactions with singular kernels and their approximations, IHP, December 2023

Joint work with Łukasz Mądry (Paris Dauphine)

Summary

In this talk : we consider the limit as $\varepsilon \to 0$ of

$$dX_t = sign(X_t)|X_t|^{\gamma}dt + \varepsilon dB_t^H, \quad X_0 = 0,$$

where B^{H} is a fractional Brownian motion, $\gamma <$ 1, and show that it concentrates on the extremal solutions

$$x^{\pm}(t) = \pm C_{\gamma} t^{\frac{1}{1-\gamma}}.$$

Regularization by noise of ODE

Recall that, by the classical Cauchy-Lipschitz theory, the ODE

$$dx_t = b(x_t)dt, \quad x_0 \in \mathbb{R}^N$$

is classically well-posed for *b* Lipschitz continuous.

In contrast, in the case of SDE :

$$dX_t = b(X_t)dt + dW_t, \quad X_0 \in \mathbb{R}^N,$$

where W is a (standard) Brownian motion, it is known that b **bounded** is enough to have (strong) well-posedness for the SDE : Zvonkine '74, Veretennikov '81 (adapted solutions), Davie '07 (path-by-path uniqueness).

$$dX_t = b(X_t)dt + dW_t, \quad X_0 \in \mathbb{R}^N,$$

Idea : the map

$$T^{W;[0,t]}b:x\mapsto \int_0^t b(x+W_s)ds$$

is much more regular w.r.t. x than b.

In fact : $T^{W;[0,t]}b = b * \mu_{W;[0,t]}$ where $\mu_{W;[0,t]}$ is the occupation measure, and roughly speaking, irregularity of $W \leftrightarrow$ regularity of $\mu_{W;[0,t]}$.

Letting $\theta = X - W$, the SDE is equivalent to

$$heta_t = heta_0 + \int_0^t b(heta_s + W_s) ds$$

which is close to an ODE along $T^{W;[0,t]}b$ (assuming that θ evolves at a slower time scale than W).

Fractional Brownian motion

The above principle only requires W to have irregular paths \rightarrow more general family of processes with varying degree of (irr)regularity ?

Natural candidate : $W = (W_t)_{t \ge 0}$ fractional Brownian motion (fBm) with Hurst parameter $H \in (0, 1)$.

• Gaussian process, stationary increments, $W_0 = 0$ and

$$\|W_t - W_s\|_{L^2(\Omega)} = |t - s|^H,$$

- sample paths are $(H \varepsilon)$ -Hölder continuous
- Representation as moving average of a standard (2-sided) BM B :

$$W_t = C_H \int_{-\infty}^t \left((t-s)^{H-\frac{1}{2}} - (-s)_+^{H-\frac{1}{2}} \right) dB_s,$$

• NOT a semimartingale, NOT a Markov process (for $H \neq \frac{1}{2}$).

Regularization of ODE by fractional noise

Consider, for W^H fractional Brownian motion with Hurst index $H \in (0, 1)$

 $dX_t = b(X_t)dt + dW_t^H$, with b singular

Early results in the scalar case by Nualart-Ouknine '02

More recently : Catellier-Gubinelli '16 show well-posedness when

$$b\in C^{\gamma}, \qquad \gamma>1-rac{1}{2H}$$

(Note : γ may be negative in which case $\int_0^t b(X_s) ds$ must be suitably interpreted). Based on regularity results for the averaged field

 $(T^W b)(t, x) = \int_0^t b(x + W_s) ds$ and nonlinear Young integration.

Recent progress using **stochastic sewing lemma** (Lê '20), very active research area.

Selection by noise

Let *b* be non-Lipschitz and X^{ε} solve

$$dX_t = b(X_t)dt + \varepsilon dW_t, \quad X_0 \in \mathbb{R}^N,$$

what can we say about the behaviour of X^{ε} as $\varepsilon \to 0$?

Hope : convergence to one (or more) particular solution(s) to the ODE $\dot{x} = b(x)$, which could be interpreted as the natural "physical" solutions. (Selection by noise).

Difficult question in general ! In the rest of the talk : focus on scalar equations, with an isolated singularity.

A scalar example

Consider (for $0 < \gamma < 1$)

$$b(x) = \left\{ egin{array}{cc} A|x|^\gamma, & x \geqslant 0 \ -B|x|^\gamma, & x < 0. \end{array}
ight.$$

The equation

$$dx_t = b(x_t)dt, \ x_0 = 0$$

admits infinitely many solutions, of the form

$$x^{+,t_0} = c_{A,\gamma}(t-t_0)_+^{rac{1}{1-\gamma}}, \text{ or } x^{-,t_0} = -c_{B,\gamma}(t-t_0)_+^{rac{1}{1-\gamma}}$$

Theorem (Bafico-Baldi '82)

Let X^{ε} be the solution to $dX_t = b(X_t)dt + \varepsilon dW_t$. Then it holds that

$$\mathcal{L}_{X^{arepsilon}} o_{arepsilon o 0} \pi \delta_{x^+, \mathbf{0}} + (1-\pi) \delta_{x^-, \mathbf{0}}.$$

for some (explicit) $\pi = \pi(A, B, \gamma)$.

Their proof is based on "PDE" arguments (martingales, Markov processes)

Main result : setting

We take W fBm with Hurst index H, fix $1>\gamma>1-\frac{1}{2H}$ and b such that :

where A, B > 0, and let X^{ε} solve

$$dX_t^{\varepsilon} = b(X_t^{\varepsilon})dt + \varepsilon dW_t, \ X_0^{\varepsilon} = 0.$$

Again, for $\varepsilon = 0$, we have the family of "solutions"

$$x^{+,t_0} = c_{\mathcal{A},\gamma}(t-t_0)_+^{rac{1}{1-\gamma}}, \text{ or } x^{-,t_0} = -c_{\mathcal{B},\gamma}(t-t_0)_+^{rac{1}{1-\gamma}}$$

Main result

Theorem (G.-Mądry)

Under the above assumptions, it holds that

$$\mathcal{L}_{X^arepsilon} o_{arepsilon o 0} \, \pi \delta_{x^+, \mathbf{o}} + (1 - \pi) \delta_{x^-, \mathbf{o}}.$$

for some $\pi \in (0,1)$.

In fact, for any 0 < δ < 1, there exists $au_{arepsilon}$ with

 $\forall s \geqslant 0, \ X_{s+\tau_{\varepsilon}} \geqslant (1-\delta) x_s^{+,0} \ \text{or} \ X_{s+\tau_{\varepsilon}} \leqslant (1-\delta) x_s^{-,0}$

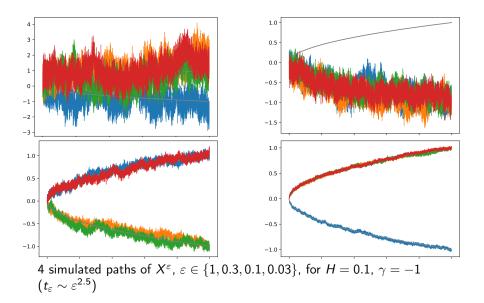
and letting $t_{\varepsilon} = \varepsilon \left(\frac{1}{1-\gamma} - H\right)^{-1}$, it holds that

$$\sup_{\varepsilon} \mathbb{P}\left[\frac{\tau_{\varepsilon}}{t_{\varepsilon}} \geqslant \lambda\right] \leqslant \exp(-C\lambda^{\kappa}),$$

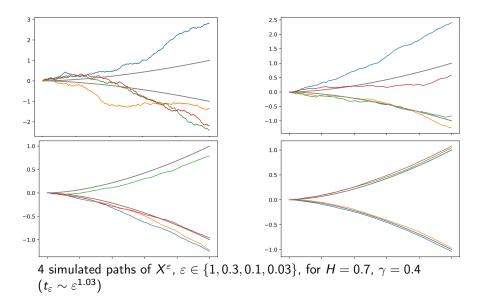
for some $0 < \kappa < 1$.

Remark : for $\gamma > 0$, the first assertion was already proven by Pilipenko-Proske '18.

Simulations



Simulations



Ideas of proof

$$dX_t^{\varepsilon} = b(X_t^{\varepsilon})dt + \varepsilon dW_t, \ X_0 = 0.$$

Scaling idea ("transition point") from Delarue-Flandoli '14 : Recall that (up to constants)

$$x_t^{+,0} = t^{\frac{1}{1-\gamma}}, \quad |\epsilon W_t| \approx \epsilon t^H.$$

Let

$$t_{\varepsilon} = \varepsilon^{\left(\frac{1}{1-\gamma} - H\right)^{-1}}$$

be such that these coincide, and x_{ε} their common value at this time.

Then :

 $\begin{array}{ll} \text{for } t << t_{\varepsilon}, \ X_t \approx \varepsilon W_t & (\text{randomness dominates}) \\ \text{for } t >> t_{\varepsilon}, \ X_t \approx x_t^{\pm,0} & (\text{drift dominates}) \end{array}$

the transition between these two regimes happens at a time of order t_{ε} where |X| is of order x_{ε} . (in fact $X^{\varepsilon} = {}^{(d)} x_{\varepsilon} X^{1}_{./t_{\varepsilon}}$)

Markovian proof (Delarue-Flandoli, H = 1/2)

Follow the following procedure :

- **(**) Wait until X^{ε} hits level $\pm x_{\varepsilon}$, this happens at time τ_1 , of order t_{ε}
- 3 Starting from $\pm x_{\varepsilon}$,

$$\mathbb{P}\left(orall s \geqslant 0, \left| X_{ au_1 + s}^{arepsilon}
ight| \geqslant (1 - \delta) x_s^{0, +}
ight) \geqslant p > 0.$$

- If the above event does not happen and fails at time σ₁, wait until time τ₂ where |X^ε| ≥ x_ε
- iterate with times τ_k , σ_k , ...

If everything were Markov, the above procedure would conclude after finitely many (independent) steps.

What about in our case ?

Main difficulty : Non-Markovian techniques

 W^H non Markovian : what happens between and after time τ_1 is correlated, and so are the subsequent attempts...

But recall that W can be written in terms of the (Markov !) process B :

$$W_t = C_H \int_{-\infty}^t \left((t-s)^{H-\frac{1}{2}} - (-s)^{H-\frac{1}{2}}_+ \right) dB_s,$$

and for $u \ge v \ge s$, with $u - v \ll v - s$:

$$W_{u} - W_{v} = \underbrace{\int_{-\infty}^{s} \left((u-r)^{H-\frac{1}{2}} - (v-r)^{H-\frac{1}{2}} \right) dB_{r}}_{\mathcal{F}_{s}\text{-measurable but small}} + \underbrace{\int_{s}^{u} \left((u-r)^{H-\frac{1}{2}} - (v-r)^{H-\frac{1}{2}} \right) dB_{r}}_{i,i,j,j}$$

independent from \mathcal{F}_s

Non-Markovian techniques

We take inspiration from works on long time behaviour of fractional SDEs, in particular Hairer '06, Panloup-Richard '20 and add :

- an "admissibility" condition on *B* before starting step 1 or 2, ensuring that influence of the past is small enough (otherwise : wait i.e. "Step 0")
- during step 2, we sequentially check for constraints on *B* on growing intervals (of size proportional to t_{ε}), which ensure that *X* stays close to $x^{0,\pm}$. (when failed : wait before restarting step 1).
- The waiting times are chosen to ensure than when we restart, the influence of the past noise (*B* up to "failure" is small), to have

$$\mathbb{P}\left(|X^{\varepsilon}| \text{ stays above } x^{+,0} \text{ after } \tau_k | \mathcal{F}_{\tau_{k-1}}\right) \geqslant p > 0.$$

• More precisely : waiting times depend on 'size of B' (in some Hölder norm) before failure, and number of attempts :

$$\rho_{k+1} - \rho_k = k^{\mu_1} + \|B\|^{\mu_2}_{[\rho_{k-1},\rho_k]}$$

Open question : optimal concentration estimates

Recall Freidlin-Wentzell large deviations : if b is smooth,

$$\mathbb{P}(X^{\varepsilon} \text{ not close from } x) = exp\left(-\varepsilon^{-2}\left(C + o(1)\right)\right)$$

Situation different in the singular case !

Gradinaru-Herrmann-Roynette '01 : for H = 1/2 and $\gamma \geqslant 0$,

$$\mathbb{P}\left(|X_{1}^{\varepsilon}|>(1+\delta)x_{1}^{+}\right)=\exp\left(-\varepsilon^{-2}\left(\mathit{C}+\mathit{o}(1)\right)\right)$$

$$\mathbb{P}\left(|X_1^{\varepsilon}| < (1-\delta)x_1^+\right) = \exp\left(-\varepsilon^{\frac{-2(1-\gamma)}{1+\gamma}}\left(C + o(1)\right)\right)$$

Note that the rate in the second one is t_{ε}^{-1} ...as expected ! Q: What about $H \neq \frac{1}{2}$? From our results, we only obtain, for some small $\kappa < 1$:

$$\mathbb{P}(|X_1^arepsilon| < (1-\delta)x_1^+) \leqslant \, \exp\left(-t_arepsilon^{-\kappa}
ight)$$

Possible conjecture : the optimal rate is always

$$\varepsilon^{-2} \wedge t_{\varepsilon}^{-1}$$

(Related to rate of convergence to equilibrium for fractional SDE)

Conclusion

Main result : we consider the limit as $\varepsilon \to 0$ of

$$dX_t = b(X_t)dt + \varepsilon dW_t^H$$
, $X_0 = 0$, with $b(x) = A|x|^{\gamma} 1_{x>0} - B|x|^{\gamma} 1_{x<0}$

where W^H is a fractional Brownian motion, $1 > \gamma > 1 - \frac{1}{2H}$, and show that it concentrates on the extremal solutions

$$x^{\pm}(t) = \pm C t^{\frac{1}{1-\gamma}}.$$

Some open questions :

- Optimal concentration estimates $\mathbb{P}(X_1^{\varepsilon} \approx 0) \approx \exp(-\varepsilon^{-?})$
- Can we say anything about the weights given to x^+ and x^- in the limit ? Dependence on H ?
- More complicated (e.g. multi-dimensional) situations ? (already difficult in the Markovian case...)