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Summary

In this talk : we consider the limit as ε → 0 of

dXt = sign(Xt)|Xt |γdt + εdBH
t , X0 = 0,

where BH is a fractional Brownian motion, γ < 1, and show that it
concentrates on the extremal solutions

x±(t) = ±Cγt
1

1−γ .



Regularization by noise of ODE

Recall that, by the classical Cauchy-Lipschitz theory, the ODE

dxt = b(xt)dt, x0 ∈ RN

is classically well-posed for b Lipschitz continuous.

In contrast, in the case of SDE :

dXt = b(Xt)dt + dWt , X0 ∈ RN ,

where W is a (standard) Brownian motion, it is known that b bounded
is enough to have (strong) well-posedness for the SDE : Zvonkine ’74,
Veretennikov ’81 (adapted solutions), Davie ’07 (path-by-path
uniqueness).



dXt = b(Xt)dt + dWt , X0 ∈ RN ,

Idea : the map

TW ;[0,t]b : x 7→
∫ t

0
b(x +Ws)ds

is much more regular w.r.t. x than b.

In fact : TW ;[0,t]b = b ∗µW ;[0,t] where µW ;[0,t] is the occupation measure,
and roughly speaking, irregularity of W ↔ regularity of µW ;[0,t].

Letting θ = X −W , the SDE is equivalent to

θt = θ0 +

∫ t

0
b(θs +Ws)ds

which is close to an ODE along TW ;[0,t]b (assuming that θ evolves at a
slower time scale than W ).



Fractional Brownian motion

The above principle only requires W to have irregular paths → more
general family of processes with varying degree of (irr)regularity ?

Natural candidate : W = (Wt)t ⩾ 0 fractional Brownian motion (fBm)
with Hurst parameter H ∈ (0, 1).

Gaussian process, stationary increments, W0 = 0 and

∥Wt −Ws∥L2(Ω) = |t − s|H ,

sample paths are (H − ε)-Hölder continuous
Representation as moving average of a standard (2-sided) BM B :

Wt = CH

∫ t

−∞

(
(t − s)H− 1

2 − (−s)
H− 1

2
+

)
dBs ,

NOT a semimartingale, NOT a Markov process (for H ̸= 1
2 ).



Regularization of ODE by fractional noise

Consider, for W H fractional Brownian motion with Hurst index
H ∈ (0, 1)

dXt = b(Xt)dt + dW H
t , with b singular

Early results in the scalar case by Nualart-Ouknine ’02

More recently : Catellier-Gubinelli ’16 show well-posedness when

b ∈ Cγ , γ > 1 − 1
2H

(Note : γ may be negative in which case
∫ t

0 b(Xs)ds must be suitably
interpreted).
Based on regularity results for the averaged field
(TW b)(t, x) =

∫ t

0 b(x +Ws)ds and nonlinear Young integration.

Recent progress using stochastic sewing lemma (Lê ’20), very active
research area.



Selection by noise

Let b be non-Lipschitz and X ε solve

dXt = b(Xt)dt + εdWt , X0 ∈ RN ,

what can we say about the behaviour of X ε as ε → 0 ?

Hope : convergence to one (or more) particular solution(s) to the ODE
ẋ = b(x), which could be interpreted as the natural "physical" solutions.
(Selection by noise).

Difficult question in general ! In the rest of the talk : focus on scalar
equations, with an isolated singularity.



A scalar example

Consider (for 0 < γ < 1)

b(x) =

{
A|x |γ , x ⩾ 0
−B|x |γ , x < 0.

The equation
dxt = b(xt)dt, x0 = 0

admits infinitely many solutions, of the form

x+,t0 = cA,γ(t − t0)
1

1−γ

+ , or x−,t0 = −cB,γ(t − t0)
1

1−γ

+

Theorem (Bafico-Baldi ’82)

Let X ε be the solution to dXt = b(Xt)dt + εdWt . Then it holds that

LXε →ε→0 πδx+,0 + (1 − π)δx−,0 .

for some (explicit) π = π(A,B, γ).

Their proof is based on ”PDE” arguments (martingales, Markov
processes)
Q : What about the non-Markovian case ?



Main result : setting

We take W fBm with Hurst index H, fix 1 > γ > 1 − 1
2H and b such

that :
b|x>0 = Axγ , b|x<0 = −B(−x)γ ,

b ∈ Cγ(R), b(λ·) = λγb(·)

where A,B > 0, and let X ε solve

dX ε
t = b(X ε

t )dt + εdWt , X ε
0 = 0.

Again, for ε = 0, we have the family of ”solutions”

x+,t0 = cA,γ(t − t0)
1

1−γ

+ , or x−,t0 = −cB,γ(t − t0)
1

1−γ

+



Main result
Theorem (G.-Mądry)

Under the above assumptions, it holds that

LXε →ε→0 πδx+,0 + (1 − π)δx−,0 .

for some π ∈ (0, 1) .

In fact, for any 0 < δ < 1, there exists τε with

∀s ⩾ 0, Xs+τε ⩾ (1 − δ)x+,0
s or Xs+τε ⩽ (1 − δ)x−,0

s

and letting tε = ε(
1

1−γ −H)−1

, it holds that

sup
ε

P
[
τε
tε

⩾ λ

]
⩽ exp(−Cλκ),

for some 0 < κ < 1.

Remark : for γ > 0, the first assertion was already proven by
Pilipenko-Proske ’18.



Simulations

4 simulated paths of X ε, ε ∈ {1, 0.3, 0.1, 0.03}, for H = 0.1, γ = −1
(tε ∼ ε2.5)



Simulations

4 simulated paths of X ε, ε ∈ {1, 0.3, 0.1, 0.03}, for H = 0.7, γ = 0.4
(tε ∼ ε1.03)



Ideas of proof

dX ε
t = b(X ε

t )dt + εdWt , X0 = 0.

Scaling idea (”transition point”) from Delarue-Flandoli ’14 :
Recall that (up to constants)

x+,0
t = t

1
1−γ , |ϵWt | ≈ ϵtH .

Let
tε = ε(

1
1−γ −H)−1

be such that these coincide, and xε their common value at this time.
Then :
for t << tε, Xt ≈ εWt (randomness dominates)
for t >> tε, Xt ≈ x±,0

t (drift dominates)
the transition between these two regimes happens at a time of order tε
where |X | is of order xε.
(in fact X ε =(d) xεX

1
·/tε)



Markovian proof (Delarue-Flandoli, H = 1/2)

Follow the following procedure :
1 Wait until X ε hits level ±xε, this happens at time τ1, of order tε
2 Starting from ±xε,

P
(
∀s ⩾ 0,

∣∣X ε
τ1+s

∣∣ ⩾ (1 − δ)x0,+
s

)
⩾ p > 0.

3 If the above event does not happen and fails at time σ1, wait until
time τ2 where |X ε| ⩾ xε

4 iterate with times τk , σk , . . .

If everything were Markov, the above procedure would conclude after
finitely many (independent) steps.

What about in our case ?



Main difficulty : Non-Markovian techniques

W H non Markovian : what happens between and after time τ1 is
correlated, and so are the subsequent attempts...

But recall that W can be written in terms of the (Markov !) process B :

Wt = CH

∫ t

−∞

(
(t − s)H− 1

2 − (−s)
H− 1

2
+

)
dBs ,

and for u ⩾ v ⩾ s, with u − v << v − s :

Wu −Wv =

∫ s

−∞

(
(u − r)H− 1

2 − (v − r)H− 1
2

)
dBr︸ ︷︷ ︸

Fs -measurable but small

+

∫ u

s

(
(u − r)H− 1

2 − (v − r)
H− 1

2
+

)
dBr︸ ︷︷ ︸

independent from Fs



Non-Markovian techniques

We take inspiration from works on long time behaviour of fractional
SDEs, in particular Hairer ’06, Panloup-Richard ’20 and add :

an ”admissibility” condition on B before starting step 1 or 2,
ensuring that influence of the past is small enough (otherwise : wait
i.e. ”Step 0”)
during step 2, we sequentially check for constraints on B on growing
intervals (of size proportional to tε), which ensure that X stays close
to x0,±. (when failed : wait before restarting step 1).
The waiting times are chosen to ensure than when we restart, the
influence of the past noise (B up to ”failure” is small), to have

P
(
|X ε| stays above x+,0 after τk |Fτk−1

)
⩾ p > 0.

More precisely : waiting times depend on ’size of B’ (in some Hölder
norm) before failure, and number of attempts :

ρk+1 − ρk = kµ1 + ∥B∥µ2
[ρk−1,ρk ]



Open question : optimal concentration estimates

Recall Freidlin-Wentzell large deviations : if b is smooth,

P(X ε not close from x) = exp
(
−ε−2 (C + o(1))

)
Situation different in the singular case !
Gradinaru-Herrmann-Roynette ’01 : for H = 1/2 and γ ⩾ 0,

P
(
|X ε

1 | > (1 + δ)x+1
)
= exp

(
−ε−2 (C + o(1))

)
P
(
|X ε

1 | < (1 − δ)x+1
)
= exp

(
−ε

−2(1−γ)
1+γ (C + o(1))

)
Note that the rate in the second one is t−1

ε ...as expected !
Q: What about H ̸= 1

2 ?
From our results, we only obtain, for some small κ < 1 :

P(|X ε
1 | < (1 − δ)x+1 ) ⩽ exp

(
−t−κ

ε

)
Possible conjecture : the optimal rate is always

ε−2 ∧ t−1
ε

(Related to rate of convergence to equilibrium for fractional SDE)



Conclusion

Main result : we consider the limit as ε → 0 of

dXt = b(Xt)dt + εdW H
t , X0 = 0, with b(x) = A|x |γ1x>0 − B|x |γ1x<0

where W H is a fractional Brownian motion, 1 > γ > 1 − 1
2H , and show

that it concentrates on the extremal solutions

x±(t) = ±Ct
1

1−γ .

Some open questions :
Optimal concentration estimates P(X ε

1 ≈ 0) ≈ exp(−ε−?)

Can we say anything about the weights given to x+ and x− in the
limit ? Dependence on H ?
More complicated (e.g. multi-dimensional) situations ? (already
difficult in the Markovian case...)


